ENRICO MACII

Scarica il contatto come vcard Foto

Professore Ordinario

Membro Centro Interdipartimentale (IAM@PoliTo - Integrated Additive Manufacturing)

+39 0110907074 / 7074 (DIST)

+39 0110907434 / 7434 (DIST)

Pagina web personale

Progetti di ricerca

Finanziati da bandi competitivi

  • Together for RISc-V Technology and ApplicatioNs, (2022-2025) - Responsabile Scientifico

    Ricerca UE

    ERC sectors

    PE6_2 - Computer systems, parallel/distributed systems, sensor networks, embedded systems, cyber-physical systems

    SDG

    Obiettivo 12. Garantire modelli sostenibili di produzione e di consumo

    Abstract

    TRISTAN’S overarching aim is to expand, mature and industrialize the European RISC-V ecosystem so that it is able to compete withexisting commercial alternatives. This will be achieved by leveraging the Open-Source community to gain in productivity and quality.This goal will be achieved by defining a European strategy for RISC-V based designs including the creation of a repository of industrialquality building blocks to be used for SoC designs in different application domains (e.g. automotive, industrial, etc.). The TRISTANapproach is holistic, covering both electronic design automation tools (EDA) and the full software stack. The broad consortium willexpose a large number of engineers to RISC-V technology, which will further encourage adoption. This ecosystem will ensure aEuropean sovereign alternative to existing industrial players. The 3-year project fits in the strategy of the European Commission tosupport the digital transformation of all economic and societal sectors, and speed up the transition towards a green, climate neutraland digital Europe. This transformation includes the development of new semiconductor components, such as processors, as theseare considered of key importance in retaining technological and digital sovereignty and build on significant prior investments inknowledge generation in this domain. Development strategies leveraging public research funding that exploit Open-Source havebeen shown to boost productivity, increase security, increase transparency, allow better interoperability, reduce cost to companiesand consumers, and avoid vendor lock-ins. The TRISTAN consortium is composed of 46 partners from industry (both large industriesas well as SMEs), research organizations, universities and RISC-V related industry associations, originating from Austria, Belgium,Finland, France, Germany, Israel, Italy, the Netherlands, Poland, Romania, Turkey and Switzerland.

    Strutture interne coinvolte

  • European Brain ReseArch InfrastructureS-Italy (EBRAINS-Italy), (2022-2025) - Responsabile Scientifico

    PNRR – Missione 4

    ERC sectors

    LS7_1 - Medical engineering and technology

    SDG

    Obiettivo 3. Assicurare la salute e il benessere per tutti e per tutte le età

    Abstract

    EBRAINS-Italy will be the Italian node of the EBRAINS European distributed infrastructure. It aims atenabling clinical and experimental activities in the Health sector to adequately exploit the most advancedmodeling, computational and analytical technologies available in the neuroscience field. The main objective is to bring together in a research infrastructure several groups of the highest scientific, technical, andorganizational abilities in the field of experimental/theoretical neuroscience operating in Italy, integrating theactivities in order to guarantee synergies and generate a substantial increase of scientific, industrial, and societaloutcomes on the whole national territory. The results obtained by the project, in terms of know-how,multidisciplinary resources such as new and unique experimental data, instrumentation and software specificfor neuroscience, advanced computational models, specialized training, and HPC resources, most of which willbe available from a single access point, will strengthen the competitiveness of enterprises, and the developmentof new international collaborations and innovative methods for research and development.

    Strutture interne coinvolte

  • Circular tracing per l’industria 5.0, (2022-2025) - Responsabile Scientifico

    PNRR – Piano Complementare

    ERC sectors

    PE6_12 - Scientific computing, simulation and modelling tools PE6_2 - Computer systems, parallel/distributed systems, sensor networks, embedded systems, cyber-physical systems PE6_3 - Software engineering, operating systems, computer languages PE7_3 - Simulation engineering and modelling

    SDG

    Obiettivo 12. Garantire modelli sostenibili di produzione e di consumo|Obiettivo 9. Costruire un'infrastruttura resiliente e promuovere l'innovazione ed una industrializzazione equa, responsabile e sostenibile

    Abstract

    Il progetto ha come scopo la realizzazione di un sistema misto hardware e software per la tracciabilità avanzata di componenti, semilavorati e materie prime per l’industria manifatturiera durante l’intero ciclo di vita del prodotto altamente innovativo, basato su nano/bio tagging e finalizzato all’analisi e monitoraggio real-time della sostenibilità nell’uso delle risorse nel processo produttivo, dell’identificazione a fine vita delle parti del prodotto adatte al riuso/riciclo e della sicurezza del nuovo workplace post-pandemico nei confronti del fattore umano.Il sistema, definito come piattaforma per le Sustainable Manufacturing Operations (SMOPlat) e sistemi gateways IoT integrati, consentirà di tracciare l’avanzamento della produzione nelle sue varie fasi dal punto di vista della sua sostenibilità ed emissioni equivalenti di gas serra (GHG) ed eventuali elementi a impatto negativo come scarti, fluidi, plastiche di confezionamento, energia dissipata sotto forma di calore etc.Avvalendosi di tecnologie innovative a livello di dispositivi, tecnologie di tracciabilità avanzate, elaborazione di dati, infrastrutture e interfacce con gli utenti ed algoritmi di intelligenza artificiale combinati con approcci statistici, si definirà un’architettura di piattaforma digitale (hardware e software) con caratteristiche di flessibilità ed interoperabilità, in grado di dare risposte ai temi sfidanti, quali la frammentazione degli standard, dei verticali applicativi, la necessità di privacy e sicurezza dei dati. Tecniche avanzate di rilevamento non invasivo, IoT, Intelligenza Artificiale, Cloud ed Edge Computing permettono di tracciare i componenti fisici/reali.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • MANAGE 5.0 - MANufacturing Automotive Green Evolution 5.0, (2022-2024) - Responsabile Scientifico di Struttura

    PNRR – Piano Complementare

    ERC sectors

    PE8_7 - Mechanical and manufacturing engineering (shaping, mounting, joining, separation)

    SDG

    Obiettivo 8. Incentivare una crescita economica duratura, inclusiva e sostenibile, un’occupazione piena e produttiva ed un lavoro dignitoso per tutti|Obiettivo 12. Garantire modelli sostenibili di produzione e di consumo|Obiettivo 13. Promuovere azioni, a tutti i livelli, per combattere il cambiamento climatico*

    Abstract

    L'obiettivo del progetto MANAGE5.0 è di sviluppare soluzioni innovative per il miglioramento della qualità della produzione, per la riduzione dei consumi energetici e di materie prime, e per la riduzione dei costi di gestione. Il progetto sarà focalizzato sulla seguenti aree:- Stampaggio lamiera (miglioramento della qualità di stampaggio, digital twin pressa e utensile per la robustezza del processo di formatura della lamiera, nuova metodologia per i nuovi UHSS e 6xxx, cella di controllo qualità stampaggio) - Stampaggio plastica (miglioramento dei processi produttivi in termini di qualità, robustezza, riduzione dei consumi, studio sull’ottimizzazione dei processi ausiliari (servizi Aria Compressa))- Verniciatura (BEM, PEM, metodologia termomeccanica per l'ottimizzazione del ciclo di cataforesi e verniciatura, cella di spalmatura automatica, cella di controllo qualità verniciatura)- Saldatura (miglioramento dell'impostazione della saldatura ad arco e prevenzione dei difetti, ottimizzazione di nuove tecnologie di giunzione, metodologia termomeccanica migliorata per il rilevamento dei difetti BiW, cella di saldatura automatica)- Fabbrica: sviluppo soluzioni cooperazione uomo-robot per il miglioramento dei processi produttivi, riduzione consumi energetici buildings

    Strutture interne coinvolte

  • Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile – CNMS) - Spoke 1, (2022-2025) - Responsabile Scientifico di Struttura

    PNRR – Missione 4

    ERC sectors

    PE8_1 - Aerospace engineering

    SDG

    Obiettivo 13. Promuovere azioni, a tutti i livelli, per combattere il cambiamento climatico*|Obiettivo 12. Garantire modelli sostenibili di produzione e di consumo

    Abstract

    The spoke will create a network of research centers and laboratories, large-scale demonstration environments, full-scale prototypal applications to achieve the following goals: • development of new technologies for green civil aviation for high efficiency and low carbon footprint, for the medium/short range transport, regional and public utility services;• identification of logistic alternatives based on airborne and multimodal services with high autonomy and deport infrastructures;• outline of the guidelines for the design of autonomous and single pilot systems in aeronautics (with particular emphasis on the Advanced / Urban Air Mobility) and evaluate market opportunities from new technologies.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • Fluently - the essence of human-robot interaction, (2022-2025) - Responsabile Scientifico

    Ricerca UE - HE - Global Challenges - Digital, Industry and Space

    ERC sectors

    PE7_10 - Robotics

    SDG

    Obiettivo 9. Costruire un'infrastruttura resiliente e promuovere l'innovazione ed una industrializzazione equa, responsabile e sostenibile

    Abstract

    Fluently leverages the latest advancements in AI-driven decision-making process to achieve true social collaboration between humans and machines while matching extremely dynamic manufacturing contexts.The project results will be: 1) Fluently Smart Interface unit and 2) the Robo-Gym.The Fluently Smart Interface unit features: 1) interpretation of speech content, speech tone and gestures, automatically translated into robot instructions, making industrial robots accessible to any skill profile; 2) assessment of the operator’s state through a dedicated sensors’ infrastructure that complements a persistent context awareness to enrich an AI-based behavioural framework incharge of triggering the generation of specific robot strategies; 3) modelling products and production changes in a way they could be recognized, interpreted and matched by robots in cooperation with humans. Robots equipped with Fluently will constantly embrace humans’ physical and cognitive loads, but will also learn and build experience with their human teammates to establish amanufacturing practise relying upon quality and wellbeing.The bond between human and robot is personalized, and it is established during a preliminary training at the Robo-Gym, the first European hub for human-robot interactive training, where human and robot learn from each other a common work practice. Fluently will be validated by demonstration on three full scale pilots characterized by various level of automation, production dynamism andcomplexity of the manufacturing decision making process.The total project value required to commercialize the Fluently device and Robo-Gym concept is 18.8 M EUR. Forecast for EBITDA in 2028 is 16.3 M EUR, payback in 2028, with 13% gross profit and ROI 91% in line with sectorial performances. The new turnover generated requires at least 325 workers employed along the Fluently supply chain. Fluently will bring together 21 key industrial andacademic stakeholders from 13 countries.

    Strutture interne coinvolte

  • Pneumatici NEXT GENERATION di Michelin Italia ad Alte Performance, Innovativi, Circolari e Sostenibili – X HP NG PEU, (2022-2025) - Responsabile Scientifico di Struttura

    National Research

    ERC sectors

    PE8_8 - Materials engineering (metals, ceramics, polymers, composites, etc.)

    SDG

    Obiettivo 12. Garantire modelli sostenibili di produzione e di consumo

    Abstract

    la finalità della proposta progettuale è lo sviluppo di nuove gamme NEXT GENERATION di pneumatici turismo (TC) e autocarro (PL) che consentano a Michelin Italia (SAMI) di rivolgersi al mercato con una proposta innovativa che sia il nuovo standard per entrambi i mercati, condizione necessaria per la competitività dell’azienda che opera in un settore caratterizzato da alti volumi e ridotta marginalità.Il programma di ricerca e sviluppo prevede per entrambi i settori una serie di innovazioni sia di prodotto sia di processo necessarie a conseguire gli obiettivi fissati.

    Strutture interne coinvolte

  • Embedded storage elements on next MCU generation ready for AI on the edge, (2021-2024) - Responsabile Scientifico

    Ricerca UE - JTI - ECSEL

    ERC sectors

    PE6_7 - Artificial intelligence, intelligent systems, multi agent systems

    SDG

    Obiettivo 9. Costruire un'infrastruttura resiliente e promuovere l'innovazione ed una industrializzazione equa, responsabile e sostenibile

    Abstract

    The main objective of the storAIge project is the development and industrialization of FDSOI 28nm and next generationembedded Phase Change Memory (ePCM) world-class semiconductor technologies, allowing the prototyping of highperformance, Ultra low power and secured & safety System on Chip (SoC) solutions enabling competitive ArtificialIntelligence (AI) for Edge applications. The main challenge addressed by the project is on one hand to handle the complexityof sub-28nm ‘more than moore’ technologies and to bring them up at a high maturity level and on the other hand to handlethe design of complex SoCs for more intelligent, secure, flexible, low power consumption and cost effective. The project istargeting chipset and solutions with very efficient memories and high computing power targeting 10 Tops per Watt.The development of the most advanced automotive microcontrollers in FDSOI 28nm ePCM will be the support technology todemonstrate the high performances path as well as the robustness of the ePCM solution. The next generation of FDSOIePCM will be main path for general purpose advanced microcontrollers usable for large volume Edge AI application inindustrial and consumer markets with the best compromise on three requirements: performances, low power and adequatesecurity.On top of the development and industrialization of silicon process lines and SoC design, storAIge will also address newdesign methodologies and tools to facilitate the exploitation of these advanced technology nodes, particularly for highperformance microcontrollers having AI capabilities. Activities will be performed to setup robust and adequate Security andSafety level in the final applications, defining and implementing the good ‘mixture’ and tradeoff between HW and SWsolutions to speed up adoption for large volume applications.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • Sviluppo di un sistema di monitoraggio non invasivo e gestione automatizzata dell’accesso e della frequentazione in sicurezza di impianti sportivi da parte di utenti intrinsecamente fragili, (2021-2021) - Responsabile Scientifico

    National Research

    ERC sectors

    PE7_8 - Networks (communication networks, sensor networks, networks of robots, etc.)

    SDG

    Obiettivo 3. Assicurare la salute e il benessere per tutti e per tutte le età

    Abstract

    Il progetto PoliSensor si propone di realizzare un sistema prototipale che consenta agli utenti degli impiantisportivi, in particolare, minori, anziani e diversamente abili, l’accesso e la fruizione in sicurezza, minimizzandoil disagio. Il sistema:• Impiegherà tecnologie elettronico-informatiche (nodi sensore mobili) che permetteranno la misurazione delladistanza interpersonale (al 100% anonima - non sono richiesti né registrati i dati personali - quindi rispettosadelle vigenti norme sulla privacy) dei frequentatori di un centro sportivo• Invierà automaticamente agli utenti segnalazioni utili per garantire il rispetto delle misure di prevenzione emitigazione del contagio (distanziamento sociale, grado di affluenza)• Monitorerà in locale e remoto la situazione, informando il gestore dell’impianto che così potrà individuare edapplicare, in tempo reale, azioni correttive per casi anomali o di emergenza• Verrà collaudato e validato in impianti sportivi reali.Per la specifica delle tecnologie da utilizzare saranno coinvolte competenze di tipo informatico, medico,legale, economico, sportivo e gestionale, disponibili nella compagine che realizzerà il progetto.

    Strutture interne coinvolte

  • Industry 4.0 Complex Solution for Manufacturing Supply Chain, (2021-2023) - Responsabile Scientifico

    Ricerca Regionale - Piattaforme Tecnologiche

    ERC sectors

    PE7_11 - Components and systems for applications (in e.g. medicine, biology, environment) PE6_10 - Web and information systems, database systems, information retrieval and digital libraries, data fusion PE6_2 - Computer systems, parallel/distributed systems, sensor networks, embedded systems, cyber-physical systems PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)

    SDG

    Obiettivo 9. Costruire un'infrastruttura resiliente e promuovere l'innovazione ed una industrializzazione equa, responsabile e sostenibile

    Abstract

    Il progetto ICS-MSC ha come obiettivo la realizzazione di una piattaforma flessibile per l’hosting di Digital Twin che possano rappresentare prodotti e/o processi produttivi in tempo reale. Lo scopo del Digital Twin, infatti, è la simulazione in tempo reale del processo produttivo (meccanico/intra logistico e di confezionamento/stoccaggio nei due casi d’uso utilizzando i dati provenienti dai sistemi di produzione e forniti da sensori e gateway IoT e analizzando il comportamento con tecniche di Intelligenza Artificiale al fine di predire eventuali scostamenti, cali di performance e problematiche di qualità del prodotto.

    Strutture interne coinvolte

  • 4Assi – ASSieme X Innovare, (2021-2023) - Responsabile Scientifico

    Ricerca Regionale - Piattaforme Tecnologiche

    Abstract

    il progetto ha come scopo il miglioramento della produttività, dell’efficienza energetica e dellaqualità di fabbricazione degli pneumatici tramite interventi sui processi di produzione, attuabili grazie ainuovi paradigmi dell’Industria 4.0. Gli output del progetto possono rappresentare un asset strategicoall’interno sia del grande gruppo di Michelin, al fine di attrarre investimenti e nuove fabbricazioni nei sitipiemontesi, sia nelle PMI associate, in modo da renderle competitive nel settore della fabbricazione di pneumatici, ma anche in altri ambiti produttivi. In questo contesto il Politecnico, grazie alle conoscenze intermini di gestione e controllo delle nuove tecnologie, darà supporto alle aziende coinvolte nello sviluppo di soluzioni innovative, al fine di incrementarne la competitività, contribuendo così alla creazione di specifiche competenze Industria 4.0 in ambito Regionale.

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • MICHELIN ITALIANA S.p.A. - STABILIMENTO DI TORINO -

    Strutture interne coinvolte

  • IMPACT - Implementazione della Produzione Additiva CompeTitiva, (2020-2022) - Responsabile Scientifico

    Ricerca Regionale - Piattaforme Tecnologiche

    Abstract

    il progetto ha come obiettivo la promozione della tecnologia di Additive Manufacturing (AM) puntando all’integrazione fra nuove tecnologie digitali e processi smart, che diano come risultato finale una riduzione dei limiti attualmente presenti nella produzione additiva. Il principale obiettivo del progetto è rendere l’AM competitivo in termini di costo. Il progetto IMPACT infatti propone lo sviluppo di soluzioni in modo da aumentare il livello di automazione della macchina e dare accesso ad una serie di servizi digitali per un processo più facile e profittevole. L’innovazione principale è nell’utilizzo delle tecnologie digitali per permettere un’integrazione industriale dell’AM all’interno di end-user qualificati per la produzione di componenti ad alto valore aggiunto. Il progetto punterà all’elevata produttività ed al consolidamento dei nuovi processi di AM ad elevate performance, alla estensione a nuovi materiali grazie alle sorgenti di diversa lunghezza, all’elevato grado di automazione grazie ad un approccio digitale completo (monitoraggio di processo, IoT, high power cloud computing, machine learning,), ai nuovi modi di programmare e usare la macchina (assistente vocale e assistente visivo) per una più facile integrazione del processo in contesti produttivi tradizionali ed una maggiore sicurezza dell’operatore.

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • Prima Industrie S.p.A.

    Strutture interne coinvolte

  • all-in-one machine for hybrid technologies enabling high value added multi-scale integrated micro.optoelectronics, (2020-2023) - Responsabile Scientifico

    Ricerca UE - H2020 - Industrial Leadership – LEIT - NANOTECHNOLOGIES

    Vedi la scheda del progetto su CORDIS

    ERC sectors

    PE3_4 - Electronic properties of materials, surfaces, interfaces, nanostructures, etc.

    SDG

    Obiettivo 9. Costruire un'infrastruttura resiliente e promuovere l'innovazione ed una industrializzazione equa, responsabile e sostenibile

    Abstract

    The new emerging generation of microsystems represents a major opportunity for a substantial EU economic growth, in an industry counting already more than 200.000 workers and a turnover in 2019 of 450 billion. The Mesomorph concept provides the means to overcome the following 4 main hurdles:1. The intrinsic physic of microsystems doesnt allow the simple downsizing of conventional technologies to industrialize micromanufacturing processes. Mesomorphallows to limit the number of micromanipulation tasks by integrating an all-in-onemachine featuring novel processes for the direct creation of functions (electronic, fluidic, optic) directly on a substrate, with a RESOLUTION down to 300nm, by combining multi-material addition (Two-Photon Polymerization, Atomic Layer 3D nano printing) and subtraction (Femtolaser micro-ablation) in a self-contained white room.2. Because of the intrinsic slowness of physical processes at microscale, productivity cannot be achieved by sequencing multiple single steps. Mesomorph proposes a scaleup throughput by PARALLELIZATION and batch processing UP TO 50k PARTS/YEAR, leveraging a new multiple micronozzles system to extend the SADALP working area from 10x10mm up to 500x500mm, and concurrently leveraging on the beam splitting technique of a high-power fs laser for ablation.3. Microsystems cannot be conceived with subcomponents. Mesomorph includes a specific Design-to-Lifevalue Platform to guide the development of new microsystems by fully exploiting the new processes.4. Innovation cannot be limited by the financial risk associated with the necessary investments. Mesomorph implements a new Manufacturing as a Service business model in which all the value chains actors can benefit from a positive net cash flow since production's start, effectively removing entry barriers for innovators.Mesomorph consortium is composed of 13 partners from 5 different countries. Each partner represents excellence in its own field.

    Paesi coinvolti

    • Italia
    • Svizzera
    • Germania
    • Lituania
    • Danimarca

    Enti/Aziende coinvolti

    • IRIS SRL
    • HELIOTIS AG
    • FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
    • MORPHICA SOCIETA A RESPONSABILITA LIMITATA
    • UAB FEMTIKA
    • OPI PHOTONICS SRL
    • ATLANT HOLDING IVS
    • MCH-TRONICS SAGL
    • POLITECNICO DI TORINO
    • SMOLSYS AG
    • SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA ITALIANA
    • STMICROELECTRONICS SRL

    Strutture interne coinvolte

  • HiCONNECTS- Heterogeneous Integration for Connectivity and Sustainability, (data sconosciuta-data sconosciuta) - Responsabile Scientifico

    Ricerca UE - JTI - ECSEL

    ERC sectors

    PE3_5 - Semiconductors and insulators: material growth, physical properties PE7_2 - Electrical engineering: power components and/or systems PE7_12 - Electrical energy production, distribution, application PE6_3 - Software engineering, operating systems, computer languages

    SDG

    Obiettivo 12. Garantire modelli sostenibili di produzione e di consumo

    Abstract

    The high-level objective of HiCONNECTS is to support major societal and industrial challenges by developing heterogenous integration (HI) core technology solutions for energy-efficient cloud and edge computing to solve one of the main state-of- the-art roadblocks: the transmission of IOT data over the IT network. This roadblock causes high latency, limited bandwidth, and high energy consumption per bit of information, so that the current cloud platforms cannot satisfy the IOT applications that require real-time response. The second and directly linked objective is to use these HI components to develop solutions in societal and economical important areas, with major focus on RF technologies (wi-fi, 5G/6G and Radar) and IT data growth infrastructure (networking cards and switches) for the advancement of vertical sectors such as connected vehicles, smart cities, and connected industry.
  • THERMINATOR - MODELLING, CONTROL AND MANAGEMENT OF THERMAL EFFECTS IN ELECTRONIC CIRCUITS OF THE FUTURE, (data sconosciuta-data sconosciuta) - Responsabile Scientifico

    Ricerca UE - VII PQ - COOPERATION - ICT

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • STMICROELECTRONICS S.R.L.
  • CONSORTIUM AGREEMENT CLEAN - CONTROLLING LEAKAGE POWER IN NANOCMOS SOCS , (data sconosciuta-data sconosciuta) - Responsabile Scientifico

    Ricerca UE - VI PQ - IST

    Vedi la scheda del progetto su CORDIS

    Abstract

    With the advent of nanometric devices, the relevance of leakage power has grown tremendously. All technology roadmaps, as well as the results from advanced semiconductor labs indicate leakage as the real showstopper for the future generations of nanoelectronic circuits if proper counter-measures will not be taken. To be successful, and thus leading to the capability of fabricating chips with sub-65nm technologies, such counter-measures must be rooted in the design domain, as process improvement will not be sufficient to cope with the increased leakage currents in MOSFETs. In other terms, time has come for considering leakage reduction also a design problem, and not only a technology problem.CLEAN will contribute in a decisive way to the solution of the problem of controlling leakage currents in CMOS designs below 65nm, which is of strategic importance in the ASIC and SoC design landscape. The RandD effort will crystallize around the development of new leakage models for nanometric technologies usable at different levels of abstraction, from device to behavioral, innovative circuit and architectural solutions for efficient leakage management, novel methods and prototype EDA tools for automatic leakage minimization. Such methods and tools will be integrated into commercial EDA frameworks, thus providing comprehensive solutions for power-driven design.The CLEAN Consortium features the right mix of competence (semiconductor vendors, EDA vendors, research institutes) and the appropriate mobilization of resources to guarantee the successful achievement of all the project objectives. Tight links to on-going European projects targeting advanced silicon technology development (e.g., the NanoCMOS IP and its possible successor, PullNano) will guarantee synergy and convergence of objectives, towards the establishment of design capabilities that will be key for consolidating and growing the European competitiveness in the nanoelectronics business of the future.

    Paesi coinvolti

    • Germania
    • Italia

    Enti/Aziende coinvolti

    • EDACENTRUM GMBH
    • CHIPVISION DESIGN SYSTEMS AG
    • CONSORZIO PER LA RICERCA E L'EDUCAZIONE PERMANENTE, TORINO
    • POLITECNICO DI TORINO
    • UNIVERSITAT POLITECNICA DE CATALUNYA
    • POLITECHNIKA WARSZAWSKA
    • DANMARKS TEKNISKE UNIVERSITET
    • STMICROELECTRONICS SA
    • BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
    • COMMISSARIAT A L'ENERGIE ATOMIQUE
    • OFFIS EV
    • INFINEON TECHNOLOGIES AG
    • BULLDAST S.R.L.
  • CONSORTIUM AGREEMENT MAP2 - MICRO-ARCHITECTURAL POWER MANAGEMENT: METHODS, ALGORITHMS AND PROTOTYPE TOOLS, (data sconosciuta-data sconosciuta) - Responsabile Scientifico

    Ricerca UE - VI PQ - PMI

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • KURATORIUM OFFIS E.V.
  • Activity Title Automation of Visual Inspection Pnd Finishing Processes for Aero-engines – AVISPA, (2020-2020) - Responsabile Scientifico

    Ricerca UE - EIT

    Abstract

    Several manufacturing techniques used in the avia??on propulsion segment have reached a sufficient maturity level to integrate closed loop controls andalgorithms thanks to a higher and deeper use of visual sensors and machine learning algorithms. The AVISPA ac??vi??es will target the integra??on of automa??cvisual inspec??on, automa??on and digital control technologies to cri??cal manufacturing processes used by avia??on industrial leaders (ITP and Avio Aero):• Predic??ve monitoring of cu??ng tool wear• Closed loop control of several machining techniques such as surface finishing and chamfering(*)• Automa??on of visual inspec??on applied to part with honeycomb and cri??cal engine components(*)The ac??vi??es will have deep impact on manufacturing techniques that are widely used on the market and will therefore allow great achievements in terms ofmanufacturing technology efficiency and digi??za??on.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • Arrowhead Tools for Engineering of Digitalisation Solutions, (2019-2022) - Responsabile Scientifico

    Ricerca UE - JTI - ECSEL

    Vedi la scheda del progetto su CORDIS

    Abstract

    For the purpose of creating digitalisation and automation solutions Arrowhead Tools adresses engineering methodologies and suitable integrated tool chains. With the global aim of substantial reduction of the engineering costs for digitalisation/automation solutions. Thus the Arrowhead Tools vision is: - Engineering processes and tool chains for cost efficient developments of digitalization, connectivity and automation systems solutions in various fields of application For the further and wider commercialisation of automation and digitalisation services and products based on SOA, Arrowhead Framework and similar technologies there is a clear need for engineerings tools that integrates existing automation and digitalisation engineering procedures and tool with SOA based automation/digitalisation technology. For this purpose the Arrowhead Tools grand challenges are defined as: - Engineering costs reduction by 40-60% for a wide range of automation/digitalisation solutions. - Tools chains for digitalisation and automation engineering and management, adapted to: 1. existing automation and digitalisation engineering methodologies and tools 2. new IoT and SoS automation and digitalisation engineering and management tools 3. security management tools - Training material and kits for professional engineers The results will create impact on: - Automation and digitalisation solution market - Automation and engineering efficiency and the SSBS market - Automation and digitalisation security - Competence development on engineering of automation and digitalisation solution

    Paesi coinvolti

    • Repubblica Ceca
    • Belgio
    • Ungheria
    • Finlandia
    • Spagna
    • Germania
    • Paesi Bassi
    • Austria
    • Svezia
    • Norvegia
    • Francia
    • Romania
    • Svizzera
    • Italia
    • Portogallo
    • Turchia
    • Lettonia
    • Polonia

    Enti/Aziende coinvolti

    • CAMEA SPOL SRO
    • SIRRIS HET COLLECTIEF CENTRUM VAN DE TECHNOLOGISCHE INDUSTRIE
    • AITIA INTERNATIONAL INFORMATIKAI ZARTKORUEN MUKODO RT
    • ABB OY
    • DOTGIS CORPORATION SL
    • ECLIPSE FOUNDATION EUROPE GMBH
    • ASML NETHERLANDS B.V.
    • FORSCHUNG BURGENLAND GMBH
    • AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH
    • CISC SEMICONDUCTOR GMBH
    • ULMA EMBEDDED SOLUTIONS S COOP
    • BNEARIT AB
    • INFINEON TECHNOLOGIES AUSTRIA AG
    • ROBERT BOSCH GMBH
    • MONDRAGON SISTEMAS DE INFORMACION SOCIEDAD COOPERATIVA
    • INCQUERY LABS ZARTKORUEN MUKODO RT
    • MONDRAGON CORPORACION COOPERATIVA SCOOP
    • TEKNOLOGIAN TUTKIMUSKESKUS VTT OY
    • JOTNE EPM TECHNOLOGY AS
    • MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S COOP
    • COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    • BEIA CONSULT INTERNATIONAL SRL
    • HOGSKOLEN I OSTFOLD
    • FAGOR AUTOMATION S COOP
    • SEMANTIS INFORMATION BUILDERS GMBH
    • EQUA SOLUTIONS AG
    • SYSTEMA SYSTEMENTWICKLUNG DIPL INF.MANFRED AUSTEN GMBH
    • INSTITUT FUER AUTOMATION UND KOMMUNIKATION E.V. MAGDEBURG
    • INFINEON TECHNOLOGIES AG
    • BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
    • SANTER REPLY SPA
    • EUROTECH SPA
    • AEE - INSTITUT FUR NACHHALTIGE TECHNOLOGIEN
    • LUNDQVIST TRAVARU AB
    • BOLIDEN MINERAL AB
    • USTAV TEORIE INFORMACE A AUTOMATIZACE AV CR VVI
    • WAPICE OY
    • TELLU IOT AS
    • VYSOKE UCENI TECHNICKE V BRNE
    • KNOWLEDGE CENTRIC SOLUTIONS SL
    • UNIVERSIDADE NOVA DE LISBOA
    • VIRTUAL VEHICLE RESEARCH GMBH
    • EXPLEO GERMANY GMBH
    • LINDBACKS BYGG AB
    • CANET SEBASTIEN
    • EQUA SIMULATION AB
    • ARCELIK A.S.
    • TECHNOLUTION BV
    • MAGILLEM DESIGN SERVICES SAS
    • KAI KOMPETENZZENTRUM AUTOMOBIL - UND INDUSTRIEELEKTRONIK GMBH
    • TECHNISCHE UNIVERSITAT KAISERSLAUTERN
    • CESKE VYSOKE UCENI TECHNICKE V PRAZE
    • PODCOMP AB
    • POLITECNICO DI TORINO
    • Hochschule fuer Technik und Wirtschaft Dresden
    • 3E
    • ICT AUTOMATISERING NEDERLAND BV
    • VOLVO LASTVAGNAR AB
    • CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LA NANOELETTRONICA
    • BOSCH IO GMBH
    • ELEKTRONIKAS UN DATORZINATNU INSTITUTS
    • ROPARDO SRL
    • STMICROELECTRONICS GRENOBLE 2 SAS
    • PHILIPS MEDICAL SYSTEMS NEDERLAND BV
    • TECHNISCHE UNIVERSITEIT EINDHOVEN
    • STMICROELECTRONICS SRL
    • UNIVERSITAET zu LUEBECK
    • INSTITUTE FUR ENGINEERING DESING OF MECHATRONIC SYSTEMS UND MPLM EV
    • POLITECHNIKA GDANSKA
    • NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
    • FAGOR ARRASATE S COOP
    • ACCIONA CONSTRUCCION SA
    • DAC Spolka Akcyjna
    • UNIVERSIDAD CARLOS III DE MADRID
    • EVOPRO INNOVATION KFT
    • CSC-TIETEEN TIETOTEKNIIKAN KESKUS OY
    • INFINEON TECHNOLOGIES DRESDEN GMBH& CO KG
    • TECHNISCHE UNIVERSITAET DRESDEN
    • IKERLAN S. COOP

    Strutture interne coinvolte

  • A virtual and learning plant model for energy efficiency assessment, (2019-2020) - Responsabile Scientifico

    Ricerca da Enti privati e Fondazioni

    Abstract

    Accordo di cooperazione CRF-Polito 2018-2022

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • FCA Italy S.p.A.

    Strutture interne coinvolte

  • Metrology Advances for Digitized ECS industry 4.0, (2019-2022) - Responsabile Scientifico

    Ricerca UE - JTI - ECSEL

    Vedi la scheda del progetto su CORDIS

    Abstract

    The metrology domain (which could be considered as the eyes and ears for both R&D&I and production) is a key enabler for productivity enhancements in many industries across the electronic components and system (ECS) value chain and have to be an integral part of any Cyber Physical Systems (CPS) which consist of metrology equipment, virtual metrology or Industrial internet of things (IIoT) sensors, edge and high-performance computing (HPC). The requirements from the metrology is to support ALL process steps toward the final product. However, for any given ECS technology, there is a significant trade-off between the metrology sensitivity, precision and accuracy to its productivity. MADEin4 address this deficiency by focusing on two productivity boosters which are independent from the sensitivity, precision and accuracy requirements: Productivity booster 1: High throughput, next generation metrology and inspection tools development for the nanoelectronics industry (all nodes down to 5nm). This booster will be developed by the metrology equipments manufacturers and demonstrated in an industry 4.0 pilot line at imec and address the ECS equipment, materials and manufacturing major challenges (MASP Chapter 15, major challenges 1 3). Productivity booster 2: CPS development which combines Machine Learning (ML) of design (EDA) and metrology data for predictive diagnostics of the process and tools performances predictive diagnostics of the process and tools performances (predictive yield and tools performance). This booster will be developed and demonstrated in an industry 4.0 pilot line at imec, for the 5nm node, by the EDA, computing and metrology partners (MASP Chapter 15, major challenge 4). The same CPS concept will be demonstrated for the digital industries two major challenges of the nanoelectronics (all nodes down to 5nm) and automotive end users partners (MASP Chapter 9, major challenges 1and 3).

    Paesi coinvolti

    • Germania
    • Belgio
    • Israele
    • Paesi Bassi
    • Francia
    • Ungheria
    • Austria
    • Italia
    • Svezia
    • Romania

    Enti/Aziende coinvolti

    • ICT Integrated Circuit Testing GmbH
    • ICOS VISION SYSTEMS NV
    • NANOMOTION LTD
    • GLOBALFOUNDRIES Dresden Module One LLC & Co. KG
    • PRODRIVE TECHNOLOGIES BV
    • PFEIFFER VACUUM
    • STMICROELECTRONICS CROLLES 2 SAS
    • PHYSIKALISCH-TECHNISCHE BUNDESANSTALT
    • NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    • SEMILAB FELVEZETO FIZIKAI LABORATORIUM ZARTKORUEN MUKODO RESZVENYTARSASAG
    • PVA TEPLA ANALYTICAL SYSTEMS GMBH
    • UNITY SEMICONDUCTOR
    • COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    • INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
    • NOVA MEASURING INSTRUMENTS LTD
    • STMICROELECTRONICS ROUSSET SAS
    • BRUKER TECHNOLOGIES LTD
    • VIRTUAL VEHICLE RESEARCH GMBH
    • INSTITUT MINES-TELECOM
    • FLEXIBLE OPTICAL BV
    • CONSIGLIO NAZIONALE DELLE RICERCHE
    • TOWER SEMICONDUCTOR LTD
    • EXCILLUM AB
    • MELLANOX TECHNOLOGIES LTD - MLNX
    • THERMO FISHER SCIENTIFIC (BREMEN) GMBH
    • ECP
    • POLITECNICO DI TORINO
    • AVL LIST GMBH
    • UNIVERSITATEA POLITEHNICA DIN BUCURESTI
    • ARKEMA FRANCE SA
    • FIAT CHRYSLER AUTOMOBILES ITALYS SPA
    • SEMI EUROPE GMBH
    • NEARFIELD INSTRUMENTS B.V.
    • FEI ELECTRON OPTICS BV
    • UNIVERSITE D'AIX MARSEILLE
    • COMAU SPA
    • TECHNISCHE UNIVERSITEIT EINDHOVEN
    • STMICROELECTRONICS SRL
    • AVL DITEST GMBH
    • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
    • KLA-TENCOR CORPORATION (ISRAEL)
    • IPPON INNOVATION
    • BRILLIANETOR LTD
    • MENTOR GRAPHICS (FRANCE)
    • TECHNISCHE UNIVERSITEIT DELFT
    • OCTO-TECHNOLOGY

    Strutture interne coinvolte

  • Additive Manufacturing using Metal Pilot Line, (2018-2022) - Responsabile Scientifico

    Ricerca UE - H2020 - Industrial Leadership – LEIT - NANOTECHNOLOGIES

    Vedi la scheda del progetto su CORDIS

    Abstract

    Metal additive manufacturing (AM) allows, by enabling use of advanced design, production of high added value components, at levels that cannot be reached with conventional manufacturing technique. Still, the AM-based manufacturing sequence implies large amounts of critical steps design for AM, AM fabrication, post processing, etc. compared to conventional production sequences. Presently, the key competencies related to these steps are either not fully implemented at industrial level (process quality monitoring) or dispersed geographically with poor connection between different steps. Relying on two major AM technologies (LPBF: Laser Powder Bed Fusion and EBM Electron Beam Melting), MANUELA aims at deploying an open-access pilot line facility, covering the whole production sequence, to show full potential of metal AM for industrial AM production.At first, careful instrumentation and adaptation of LPBF & EBM machines will allow increased process reliability and speed. Secondly, the pilot line including the adapted processes will be deployed. The hardware layer will integrate novel process quality control monitoring and automated post-AM handling and processing. The line will be fed by design/optimization and AM process simulation workshops. Those workshops will collect continuous feedback from the physical parts of the pilot lines, to increase process reliability and robustness.MANUELA relies on a consortium composed of industrial end users, suppliers, (material/powder, AM hardware, quality monitoring system, software, automation and post-AM treatment) as well as top research institutes in powder-bed metal-AM, covering full range of AM technology chain for pilot line deployment.The deployed pilot line will be validated for use cases, covering wide span of applications including automotive, aerospace, energy and medical. To insure sustainability of the deployed line and its open access at project end, a dedicated exploitation plan will be established.

    Paesi coinvolti

    • Svizzera
    • Svezia
    • Germania
    • Italia
    • Regno Unito
    • Repubblica Ceca
    • Finlandia
    • Slovacchia

    Enti/Aziende coinvolti

    • EIDGENOSSISCHES INSTITUT FUR METROLOGIE METAS
    • RISE IVF AB
    • ABB AB
    • ABB POWER GRIDS SWEDEN AB
    • FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
    • CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA - RECHERCHE ET DEVELOPPEMENT
    • OSAI AUTOMATION SYSTEM SPA
    • QIOPTIQ LIMITED
    • O.E.B. SRL
    • ENEL GLOBAL THERMAL GENERATION SRL
    • ENEL PRODUZIONE SPA
    • AMIRES THE BUSINESS INNOVATION MANAGEMENT INSTITUTE ZU
    • POLITECNICO DI TORINO
    • RUAG SLIP RINGS SA
    • MSC SOFTWARE GMBH
    • ELECTRO OPTICAL SYSTEMS FINLAND OY
    • SIEMENS ENERGY AB
    • STIFTELSEN CHALMERS INDUSTRITEKNIK
    • HOGANAS AB
    • BIOMEDICAL ENGINEERING S.R.O
    • AMIRES SRO
    • CARDIFF UNIVERSITY

    Strutture interne coinvolte

  • Human Brain Project Specific Grant Agreement 2, (2018-2020) - Responsabile Scientifico

    Ricerca UE - H2020 - Excellent Science - FET

    Vedi la scheda del progetto su CORDIS

    Abstract

    The Human Brain Project (HBP) is a major European scientific research initiative to improve our understanding of the brain and the role it plays in making us human, and to exploit the opportunities offered by the resulting knowledge. The size and complexity of the brain make this an expensive undertaking, but the costs associated with our current ignorance are rising and the potential gains from better insight into the brain are increasing. Brain-related diseases, many of which are age-related, now represent a major part of the global health burden and there are both ethical and economic imperatives to keep the growing number of older people healthier and more productive. Economic advantage is increasingly linked to artificial intelligence (AI), our ability to create technology to extract, manipulate and harness knowledge. The HBPs comprehension of what makes the human brain so efficient and flexible should help to maintain Europes competitiveness and innovation potential in this area.The HBP is one of several brain research initiatives and projects around the world, albeit one of the first, but it is unique in a number of ways. Only the HBP has an explicit focus on both neuroscience and computing. It is also the broadest and most integrated brain initiative, and the only one aiming to build a research infrastructure to accelerate brain research.The HBP is a FET Flagship which started under FP7 and continues under H2020 with a succession of Specific Grant Agreements (SGAs) under a Framework Partnership Agreement (FPA). In its FP7 Ramp-Up Phase (2013-16) and subsequent SGA1 funding period (2016-18), the HBP implemented a scientific project of rare ambition, breadth and scale, and forged its diverse constituents into a functioning entity. On the scientific side, it not only identified critical gaps in our understanding of the brain, but also created tools and obtained data to fill many of them. It designed, built and demonstrated six ICT research platforms, supporting neuroinformatics, brain simulation, high-performance analytics and computing, medical informatics, brain-inspired computing and linking of simulated brains to robotic bodies. The results have been made available to the scientific community. The HBP also learnt to address underperformance and conflicts, and opened up the Project via competitive calls and the integration of Partnering Projects.In the upcoming SGA2 funding period (2018-20), the HBP will continue to strengthen global brain research efforts by extending coordination with other brain initiatives and projects. Internally, it will continue its unique inter-disciplinary co-design approach, developing research infrastructure capabilities via use cases built around specific research needs. This approach will underpin its critical scientific work of understanding how to bridge between the different scales of brain organisation, a key prerequisite to understand the principles of brain organisation. It will include gathering data to support detailed modelling, notably of the human hippocampus, as well as structural, functional and connectivity data to improve systemic understanding of the whole brain. The HBP will also investigate brain similarities and differences between individuals and between species. It will model key brain functions, including visual recognition, slow-wave activity, episodic memory and consciousness in rodents and humans, and elaborate their cognitive architectures. In addition, it will develop simplified brain models to support further development of brain-inspired computing.SGA2 will see the individual infrastructure platforms extended and integrated into the HBP Joint Platform (HBP-JP). The JP will make HBP services more robust and improve the user experience, encouraging wider use of its tools. SGA2 should thus see a shift from supplier-driven to user-driven capabilities, while the infrastructure underpinning them will be tied closely into EU efforts to integrate and stre

    Paesi coinvolti

    • Paesi Bassi
    • Austria
    • Spagna
    • Francia
    • Svezia
    • Portogallo
    • Regno Unito
    • Germania
    • Belgio
    • Finlandia
    • Svizzera
    • Slovenia
    • Israele
    • Grecia
    • Ungheria
    • Italia
    • Turchia
    • Norvegia
    • Danimarca

    Enti/Aziende coinvolti

    • ACADEMISCH ZIEKENHUIS LEIDEN
    • INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
    • UNIVERSIDAD POMPEU FABRA
    • INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
    • LINNEUNIVERSITETET
    • UNIVERSIDADE DO MINHO
    • THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN
    • HEINRICH-HEINE-UNIVERSITAET DUESSELDORF
    • UNIVERSITE DE LIEGE
    • DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV
    • UNIVERSITEIT ANTWERPEN
    • HELSINGIN YLIOPISTO
    • THE UNIVERSITY OF HERTFORDSHIRE HIGHER EDUCATION CORPORATION
    • TECHNISCHE UNIVERSITAET GRAZ
    • UNIVERSITE LYON 1 CLAUDE BERNARD
    • UNIVERSITAETSKLINIKUM AACHEN
    • KUNGLIGA TEKNISKA HOEGSKOLAN
    • THE UNIVERSITY OF MANCHESTER
    • FZI FORSCHUNGSZENTRUM INFORMATIK
    • THE UNIVERSITY OF SHEFFIELD
    • STICHTING VU
    • IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
    • FORSCHUNGSZENTRUM JULICH GMBH
    • UNIVERSITE DE GENEVE
    • KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
    • INSTITUT JOZEF STEFAN
    • WEIZMANN INSTITUTE OF SCIENCE
    • UNIVERSITEIT GENT
    • Bloomfield Science Museum Jerusalem (BSMJ)
    • ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON
    • UNIVERSITAT BASEL
    • STICHTING KATHOLIEKE UNIVERSITEIT
    • RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
    • FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    • TECHNISCHE UNIVERSITAET MUENCHEN
    • COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    • POLYTECHNEIO KRITIS
    • DEBRECENI EGYETEM
    • UNIVERSIDAD DE GRANADA
    • ISTITUTO SUPERIORE DI SANITA
    • RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
    • UNIVERSITAET BERN
    • BAUHAUS-UNIVERSITAET WEIMAR
    • SIB INSTITUT SUISSE DE BIOINFORMATIQUE
    • FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
    • UPPSALA UNIVERSITET
    • UNIVERSITEIT MAASTRICHT
    • HITS GGMBH
    • INSTITUT DU CERVEAU ET DE LA MOELLE EPINIERE
    • AALTO KORKEAKOULUSAATIO SR
    • DE MONTFORT UNIVERSITY
    • UNIVERSITAET HAMBURG
    • FORTISS GMBH
    • UNIVERSITY OF LEEDS
    • CENTRE HOSPITALIER UNIVERSITAIRE VAUDOIS
    • SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO S ANNA
    • SABANCI UNIVERSITESI
    • KIRSERLETI ORVOSTUDOMANYI KUTATOINTEZET
    • THE UNIVERSITY OF SUSSEX
    • ECOLE NORMALE SUPERIEURE
    • NORGES MILJO-OG BIOVITENSKAPLIGE UNIVERSITET
    • SCUOLA NORMALE SUPERIORE
    • UNIVERSITY OF THE WEST OF ENGLAND, BRISTOL
    • MEDIZINISCHE UNIVERSITAT INNSBRUCK
    • TAMPEREEN KORKEAKOULUSAATIO SR
    • CONSIGLIO NAZIONALE DELLE RICERCHE
    • KARLSRUHER INSTITUT FUER TECHNOLOGIE
    • CONSORCI INSTITUT D'INVESTIGACIONS BIOMEDIQUES AUGUST PI I SUNYER
    • UNIVERSITE DE BORDEAUX
    • UNIVERSITA DEGLI STUDI DI PAVIA
    • BERGISCHE UNIVERSITAET WUPPERTAL
    • INSTITUT PASTEUR
    • UNIVERSITAT DE BARCELONA
    • EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
    • JOHANN WOLFGANG GOETHE-UNIVERSITAET FRANKFURT AM MAIN
    • TEL AVIV UNIVERSITY
    • UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
    • UNIVERSITETET I OSLO
    • POLITECNICO DI TORINO
    • UNIVERSITAT ZURICH
    • DANMARKS TEKNISKE UNIVERSITET
    • UNIVERSIDAD DE CASTILLA - LA MANCHA
    • UNIVERSITA DEGLI STUDI DI MILANO
    • KAROLINSKA INSTITUTET
    • FONDEN TEKNOLOGIRADET
    • HUMBOLDT-UNIVERSITAET ZU BERLIN
    • TECHNISCHE UNIVERSITAT DARMSTADT
    • THE HEBREW UNIVERSITY OF JERUSALEM
    • UNIVERSIDAD REY JUAN CARLOS
    • THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
    • ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS - RESEARCH CENTER
    • UNIVERSITE D'AIX MARSEILLE
    • UNIVERSIDAD AUTONOMA DE MADRID
    • UNIVERSITY OF GLASGOW
    • FONDAZIONE EUROPEAN BRAIN RESEARCHINSTITUTE RITA LEVI
    • UNIVERSITY COLLEGE LONDON
    • CINECA CONSORZIO INTERUNIVERSITARIO
    • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
    • KATHOLIEKE UNIVERSITEIT LEUVEN
    • UNIVERSITAET BIELEFELD
    • UNIVERSITY OF SURREY
    • OSTERREICHISCHE STUDIENGESELLSCHAFTFUR KYBERNETIK VEREIN
    • STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
    • MIDDLESEX UNIVERSITY HIGHER EDUCATION CORPORATION
    • UNIVERSIDAD POLITECNICA DE MADRID
    • THE UNIVERSITY OF EDINBURGH
    • LABORATORIO EUROPEO DI SPETTROSCOPIE NON LINEARI
    • FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
    • BARCELONA SUPERCOMPUTING CENTER-CENTRO NACIONAL DE SUPERCOMPUTACION
    • UNIVERSITEIT VAN AMSTERDAM
    • KING'S COLLEGE LONDON
    • CARDIFF UNIVERSITY
    • SORBONNE UNIVERSITE
    • TECHNISCHE UNIVERSITAET DRESDEN
    • ISTITUTO NAZIONALE DI FISICA NUCLEARE

    Strutture interne coinvolte

  • A virtual and learning plant model for energy efficiency assessment and interative augmented visualization and prototyping**Progetto che accorpa proposta Prof. Macii e Prof.ssa Osello, (2018-2018) - Responsabile Scientifico

    Ricerca da Enti privati e Fondazioni

    Abstract

    CLUSTER: Industry 4.0

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • FCA Italy S.p.A.

    Strutture interne coinvolte

  • DIMA- HUB , (2016-2017) - Responsabile Scientifico

    Ricerca UE

    Abstract

    La CE, nel 2013, ha promosso l’iniziativa I4MS (ICT Innovation for Manufacturing SMEs) per la creazione di hub regionali al fine di supportare la leadership europea nel settore manifatturiero attraverso l’adozione di tecnologie ICT avanzate e di prodotti dall’alto contenuto tecnologico. All'interno di I4MS, nel 2016 è stata lanciata la call “Feasibility of Regional Digital Manufacturing Innovation Hubs (RDMI)”, con l’obiettivo specifico di ampliare la copertura geografica dell’iniziativa I4MS alle regioni europee non ancora coinvolte.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

    • Amministrazione Centrale
  • Human Brain Project Specific Grant Agreement 1, (2016-2018) - Responsabile Scientifico

    Ricerca UE - H2020 - Excellent Science - FET

    Abstract

    Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding will lead to fundamentally new computing technologies, transform the diagnosis and treatment of brain diseases, and provide profound insights into our humanity. Today, for the first time, exponential improvements in the capabilities of modern ICT open up new opportunities to investigate the complexity of the brain. The goal of the Human Brain Project (HBP) is thus to build an integrated ICT infrastructure enabling a global collaborative effort to address this grand challenge, and ultimately to emulate the computational capabilities of the brain. The infrastructure will consist of a tightly linked network of six ICT platforms, which, like current large-scale physics facilities, will operate as a resource both for core HBP research and for external projects, chosen by competitive call. The HBP will drive innovation in ICT, creating new technologies for i) interactive supercomputing, visualisation and big data analytics; ii) federated analysis of globally distributed data; iii) simulation of the brain and other complex systems; iv) objective classification of disease; v) scalable and configurable neuromorphic computing systems, based on the brain's principles of computation and cognition and its architectures. Expected outputs include simulations of the brain that reveal the chains of events leading from genes to cognition; simulations of diseases and the effects of drugs; early diagnoses and personalised treatments; and a computing paradigm that overcomes bottlenecks in power, reliability and programmability, captures the brain's cognitive capabilities, and goes beyond Moore's Law. Overall, the HBP will help to reach a unified understanding of the brain, reduce the economic and social burden of brain disease, and empower the European pharmaceutical and computing industries to lead world markets with enormous potential for growth.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • Preparing R2 extension to 300mm for BCD Smart Power — R2POWER300, (2015-2018) - Responsabile Scientifico

    Ricerca UE - JTI - ECSEL

    Abstract

    R2POWER300 is committed to challenge the following Objectives: • Development and manufacturing of a multi-KET Pilot Line (i.e. Nanoelectronics, Nanotechnology, Advanced Manufacturing) • Energy Efficiency and CO2 Reduction megatrends.The project aims to achieve the following Goals:1. Set the stage for the future extension to 300mm of the R2 Fab facility located in Agrate Brianza (Italy) - i.e. line’s specification, tools’ evaluation and screening, new process’s optimization and characterization, etc. 2. To evaluate, characterize and optimize the equipments and process necessary to achieve the new BCD10 technology, featuring 90nm lithography, at 300mm wafer size. BCD (i.e. Bipolar + CMOS + DMOS) is a unique smart power technology invented by ST in the mid ‘80s (CMOS’s gate length was 4 ?m at that time!). As of today BCD is one of the key technology assets of ST and the indefatigable evolution and challenging roadmap makes ST a world-class leader on smart power ICs.3. Advanced System in Packages: some SiP activity will be performed, with specific reference to Sintering based die-attach, thermal analysis and dedicated packaging solution for high density ALD capacitors.

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • STMICROELECTRONICS S.R.L.

    Strutture interne coinvolte

  • FLEXMETER - Flexible smart metering for multiple energy vectors with active prosumers, (2015-2017) - Responsabile Scientifico

    Ricerca UE - H2020 - Societal Challenges - Energy

    Vedi la scheda del progetto su CORDIS

    Abstract

    The introduction of the electricity market, the widespread diffusion of distributed generation from renewable and non-programmable energy sources and the need for storage are quickly changing the problems that Transmission and Distribution system operators have to face in their activity and are requiring a smarter grid. A first step in this direction is the development and installation of a flexible smart metering architecture for multiple energy vectors. Up to now the smart meters that in some countries are being installed at the users are nearly only devoted to billing improvements. The new metering systems must go much further to provide their contribution to various objectives such as end-user affordability of electricity, energy and market efficiency improvement, CO2 emissions and pollutants reduction. In the FLEXMETER project a flexible, multi-utility, multi-service metering architecture will be designed and deployed in two demonstrators. Simple off-the-shelf meters will be placed at the users for electric, thermal and gas metering; they will communicate with a building concentrator, where the smartness of the metering system will reside. A central cloud system will collect data from the building concentrators and from MV/LV substation meters. Data collection, fusion and mining algorithms will be adopted. The proposed architecture will allow for innovative services for the prosumers (e.g. analysis of the energy consumption), for the Distribution System Operators (DSOs) (e.g. fault detection, network balancing and storage integration) and for the retail market. Also demand side management devices could be plugged into the system. In the FLEXMETER project two pilot applications in two different countries (Italy and Sweden), on real systems, with the involvement of the local DSOs and volunteer prosumers will be demonstrated. The results on the demonstrators will then be scaled up to the size of the cities in order to evaluate the advantages on a real scale.

    Paesi coinvolti

    • Svezia
    • Italia
    • Francia
    • Germania
    • Romania
    • Belgio

    Enti/Aziende coinvolti

    • E.ON SVERIGE AB
    • IREN ENERGIA SPA
    • INSTITUT POLYTECHNIQUE DE GRENOBLE
    • RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
    • SIVECO ROMANIA SA
    • UNIVERSITATEA POLITEHNICA DIN BUCURESTI
    • ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
    • IREN SPA
    • STMICROELECTRONICS SRL
    • TELECOM ITALIA SPA
    • JRC -JOINT RESEARCH CENTRE- EUROPEAN COMMISSION

    Strutture interne coinvolte

  • LAB4MEMS II-MOEMS:Micro-Optical MEMS, micro-mirrors and pico-projectors, (2014-2018) - Responsabile Scientifico

    Ricerca UE - JTI ENIAC

    Abstract

    Micro-Optical MEMS, micro-mirrors and pico-projectors.Lab4MEMS II will feature the Pilot Line for innovative technologies on advanced Micro-Opto-Electro-Mechanical Systems(MOEMS). This is not just a special class of MEMS systems in fact, but it deals with MEMS merged with Micro-optics, whichinvolves sensing or manipulating optical signals on a very small size scale, using integrated mechanical, optical, andelectrical systems. MOEMS includes a variety of devices including optical switch, array of micro-mirrors, optical crossconnect,lasers and micro lens amongst others. These devices are usually fabricated using micro-optics and standardmicromachining technologies using materials like silicon, molybdenum (Mo), silicon dioxide, silicon nitride (Si3N4), piezocoating, etc.The trend toward miniaturization and integration of conventional optical systems will accelerate the adoption of MOEMStechnology in commercialization of many industrial components which are today’s most desirable elements of opticalcommunication, i.e. MEMS-actuated micro optical mirrors, autofocus lens or 3D laser micro-scanners.

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • STMICROELECTRONICS S.R.L.

    Strutture interne coinvolte

  • EDEN - Energy Data Engagement, (2014-2015) - Responsabile Scientifico

    Ricerca Regionale

    Abstract

    L'idea progettuale ""EDEN"" (Energy Data ENgagement) è tesa a sviluppare un sistema di raccolta, rappresentazione e condivisione di informazioni di complessità incrementale, rendendo accessibili e trasparenti i dati afferenti alle ""cose"" che ci circondano e stimolando l'implementazione di azioni e progetti di efficienza energetica.II progetto è articolato su quattro livelli funzionali:• il primo livello (Data Platform) è caratterizzato dalla raccolta di dati generati da ""smart object"": sensori indoor e outdoor e smart meters elettrici e termici;• il secondo livello (Publication Platform) è contraddistinto dalla rappresentazione dei dati correlata alle esigenze dei diversi stakeholder coinvolti, mediante cruscotti e dashboard informativi ""su misura"" per ognuno, allo scopo di migliorare l'efficienza energetica;• il terzo livello (Social Platform) prevede lo sviluppo di una piattaforma digitale che, dando visibilità e significato ai dati raccolti da sensori collocati negli istituti scolastici e in altri edifici e luoghi pubblici, generi consapevolezza e stimoli comportamenti sostenibili negli studenti e, attraverso di loro, nella cerchia più ampia di famiglie, cittadini e stakeholder pubblici e privati;• il quarto livello è rappresentato dalla ""Smart Data Platform"" della Regione Piemonte, che il progetto ""alimenterà"" con un'importante base dati proponendo metodologie e sistemi di visualizzazione e aggregazione a seconda dell'interesse del singoli e della Collettività.

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • IREN ENERGIA S.P.A.

    Strutture interne coinvolte

  • EEB - Edifici a Zero Consumo Energetico in Distretti Urbani Intelligenti, (2014-2017) - Responsabile Scientifico

    Ricerca Nazionale - FAR

    Abstract

    Il progetto si propone di definire una serie di metodologie e di infrastrutture HW e SW che consentano di realizzare degli interventi caratterizzati da un rapporto costi/benefici ottimale finalizzati al risparmio energetico negli edifici pubblici e privati esistenti, in particolare storici, e di proporre un sistema innovativo di presentazione dei dati basato sull’AR. Tale ricerca è volta al raggiungimento dei seguenti obiettivi:- Lo sviluppo di un sistema di tecnologie innovative- Lo sviluppo di un sistema di gestione energetica a scala urbana - Lo sviluppo di un sistema di supporto decisionale e di controllo gestionale innovativo

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • TRIBUTE - TAKE THE ENERGY BILL BACK TO THE PROMISED BULDING PERFORMANCE, (2013-2017) - Responsabile Scientifico

    Ricerca UE

    Abstract

    Today, Building Energy Performance Simulation (BEPS) analysis tends to show a large discrepancy with real energy performance. Most cases are due to gross mistakes rather than fundamental inadequacy of available technology and methods. The reasons are manifold. Highly simplified calculation methods are used far beyond their domain of validity. Assumed boundary conditions such as occupant behaviour are not in accordance with actual usage; gross malfunctions in control and HVAC systems are left undetected in the commissioning process, while thermal bridges and distribution system losses are left without attention. Moreover, metered and sub-metered data are not used efficiently in calculation tools and engineering based simulation models during the Measurement and Verification (M&V) phase.TRIBUTE aims at minimizing the gap between computed and measured energy performances through the improvement of the predictive capability of a state-of-the-art commercial BEPS. TRIBUTE will extend the use of this tool to the commissioning and operation stages of a building. For existing buildings, M&V techniques will be developed and deployed to connect the BEPS model in real time to the pivotal wireless sensing and control systems of a monitored building. This involves modelling building systems to a higher fidelity than done today, developing technology for on-line identification of building key parameters, and automatically adapting the on-line, real time BEPS to the actual building’s state.In addition, BHM and EFM application will compare measured data to the then improved predicted metrics and will enable detecting building deviations. Advanced data mining methods will help evaluate these deviations. Subsequent Energy Efficiency Diagnostic Rules and optimization methods will provide cost effective and corrective retrofit actions accordingly.The methodology and tools will be evaluated in the context of three different building types and locations

    Paesi coinvolti

    • FRANCIA
    • ITALIA

    Enti/Aziende coinvolti

    • SCHNEIDER ELECTRIC SA

    Strutture interne coinvolte

  • HBP-HUMAN BRAIN PROJECT, (2013-2017) - Responsabile Scientifico

    Ricerca UE

    Abstract

    Understanding the human brain is one of the greatest challenges facing 21st century science. If we can rise to the challenge, we can gain profound insights into what makes us human, develop new treatments for brain diseases and build revolutionary new computing technologies. Today, for the first time, modern ICT has brought these goals within sight. The goal of the Human Brain Project, part of the FET Flagship Programme, is to translate this vision into reality, using ICT as a catalyst for a global collaborative effort to understand the human brain and its diseases and ultimately to emulate its computational capabilities. The Human Brain Project will last ten years and will consist of a ramp-up phase (from month 1 to month 36) and subsequent operational phases.This Grant Agreement covers the ramp-up phase. During this phase the strategic goals of the project will be to design, develop and deploy the first versions of six ICT platforms dedicated to Neuroinformatics, Brain Simulation, High Performance Computing, Medical Informatics, Neuromorphic Computing and Neurorobotics, and create a user community of research groups from within and outside the HBP, set up a European Institute for Theoretical Neuroscience, complete a set of pilot projects providing a first demonstration of the scientific value of the platforms and the Institute, develop the scientific and technological capabilities required by future versions of the platforms, implement a policy of Responsible Innovation, and a programme of transdisciplinary education, and develop a framework for collaboration that links the partners under strong scientific leadership and professional project management, providing a coherent European approach and ensuring effective alignment of regional, national and European research and programmes.

    Paesi coinvolti

    • ITALIA
    • SVIZZERA

    Enti/Aziende coinvolti

    • ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

    Strutture interne coinvolte

  • CA - HBP-HUMAN BRAIN PROJECT, (2013-2015) - Responsabile Scientifico

    Ricerca UE - VII PQ - COOPERATION - ICT

    Paesi coinvolti

    • ITALIA
    • SVIZZERA

    Enti/Aziende coinvolti

    • ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
  • CONTREX-DESIGN OF EMBEDDED MIXED-CRITICALITY CONTROL SYSTEMS UNDER CONSIDERATION OF EXTRA-FUNCTIONAL PROPERTIES, (2013-2016) - Responsabile Scientifico

    Ricerca UE - VII PQ - COOPERATION - ICT

    Vedi la scheda del progetto su CORDIS

    Abstract

    Up to now mission & safety critical services of SoS (Systems of Systems) have been running on dedicated and often custom designed HW/SW platforms. In the near future such systems will be accessible, connected with or executed on devices comprising off-the-shelf HW/SW components. Significant improvements have been achieved supporting the design of mixed-critical systems by developing predictable computing platforms and mechanisms for segregation between applications of different criticalities sharing computing resources. Such platforms enable techniques for the compositional certification of applications' correctness, run-time properties and reliability.CONTREX will complement these important activities with an analysis and segregation along the extra-functional properties real-time, power, temperature and reliability. These properties will be a major cost roadblocks when 1) scaling up the number of applications per platform and the number of cores per chip, 2) in battery powered devices or 3) switching to smaller technology nodes. CONTREX will enable energy efficient and cost aware design through analysis and optimisation of real-time, power, temperature and reliability with regard to application demands at different criticality levels. To reinforce European leadership and industrial competiveness the CONTREX approach will be integrated into existing model-based design methods that can be customized for different application domains and target platforms.CONTREX will focus on the requirements derived from the automotive, aeronautics and telecommunications domain and evaluate its effectiveness and drive integration into existing standards for the design and certification based on three industrial demonstrators. Valuable feed-back to the industrial design practice, standards, and certification procedures is pursued.Our economic goal is to improve energy efficiency by 20 % and to reduce cost per system by 30 % due to a more efficient use of the computing platform.

    Paesi coinvolti

    • Germania
    • Italia
    • Svezia
    • Svizzera
    • Francia
    • Spagna

    Enti/Aziende coinvolti

    • iXtronics GmbH
    • ST-POLITO Societa' consortile a r.l.
    • TECHNOLABS srl
    • KUNGLIGA TEKNISKA HOEGSKOLAN
    • VODAFONE AUTOMOTIVE TELEMATICS SA
    • EUROTECH SPA
    • EUROPEAN ELECTRONIC CHIPS & SYSTEMS DESIGN INITIATIVE
    • EDALab srl
    • POLITECNICO DI TORINO
    • POLITECNICO DI MILANO
    • UNIVERSIDAD DE CANTABRIA
    • DOCEA POWER
    • STMICROELECTRONICS SRL
    • INTEL CORPORATION SAS
    • GMV AEROSPACE AND DEFENCE SA

    Strutture interne coinvolte

  • READY4SMARTCITIES -ICT ROADMAP AND DATA INTEROPOPERABILITY FOR ENERGY SYSTEM IN SMART CITIES, (2013-2015) - Responsabile Scientifico

    Ricerca UE - VII PQ - COOPERATION - ICT

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • DIMMER - "DISTRICT INFORMATION MODELING AND MANAGEMENT FOR ENERGY REDUCTION" , (2013-2016) - Responsabile Scientifico

    Ricerca UE - VII PQ - COOPERATION - ICT

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • Devices for Neurocontrol and Neurorehabilitation, (2013-2016) - Responsabile Scientifico

    Ricerca UE - JTI ENIAC

    Abstract

    The primary aim of DeNeCor is to resolve this top issue such that electronic neuromodulation therapy becomes mainstream and full market potential can be obtained. We will increase acceptance by neurologists by demonstrating designed co-existency between therapy devices and diagnostic systems. The second aim of DeNeCor is to extrapolate the ‘bilateral’ agreements between AIMD and MRI manufactures in IEC/ISO 10974 to other diagnostic systems and the interaction between diagnostic systems, like EEG and UltraSound (US) and non-invasive electronics based neuromodulation therapies (paving the way for image guided neuromodulation therapy). Also in this case technical challenges have to be solved. In particular DeNeCor targets:• Focused spatial localization with a transcranial magnetic stimulator (TMS), which requires the design of a coil array with compact distributed power electronic modules and control electronics;• Arrays for neural sensing, invasive and non-invasive, based on new sensor arrays and packaging technology, with connection to modulation and rehabilitation devices. • Replacing piezo-electric US transducers by Capacitive Micromachined Ultrasound Transducers (CMUT) including 3D packaging, ASIC development and integration in an endoscopic systemThe third aim of DeNeCor is to develop test methods such that the development of therapy devices and diagnostic systems can be decoupled which increases the efficiency of the demonstrator developments and enables technical evolution of all systems at their own pace. In addition test methods are currently missing from the Technical Specification IEC/ISO 10974 and are essential for its transformation in to an international safety standard.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • Lab4MEMS -LAB FAB for smart sensors and actuators MEMS, (2013-2015) - Responsabile Scientifico

    Ricerca UE - JTI ENIAC

    Abstract

    Lab4MEMS will feature the Pilot Line for innovative technologies on advanced piezoelectric and magnetic materials, expected to fuel the nextgeneration’s smart sensors and actuators based on MEMS:1. Micro-actuators, micro-pumps, sensors and electrical power generators, integrated on silicon-based piezoelectric materials (PZT)• for use in Data Storage, Ink Jet, Health Care, Automotive and Energy Scavenging2. Magnetic field sensors integrated on silicon-based Anisotropic Magneto Resistance (AMR) materials. • for use in consumer applications such as GPS positioning and mobile phones3. Advanced packaging technologies and vertical interconnections (flip chip, Through Silicon Vias or Through Mold Vias) for full 3D integration.• For use in CONSUMER and HEALTHCARE application such as body area sensors and remote monitoring.Lab4MEMS will be promoted as an add-on to the current Manufacturing facilities located in each respective participating countries, aiming toimplement and optimize the industrial processes and to validate the demonstrators suitable to penetrate the market. Potential impact:This pilot line will fit a new set of R&D equipments and tools for PZT and AMR, as part of a larger manufacturing facility already in place in AgrateBrianza (Italy) for high volume 3-axis MEMS accelerometers and gyroscope (i.e. >100M devices/month). This strategy will allow increasing andmaintaining the know-how on those very strategic enabling technologies, combining scientific skills with the ability to design and manufacture awide range of smart micro-nano systems on silicon. The Lab4MEMS Pilot Line will be based on 200 mm wafer scale (with a forward looking impact analysis for a future move to 300mm wafer) and itwill process more than 600 wafers/week, once in operation.

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • STMICROELECTRONICS S.R.L.
    • STMICROELECTRONICS S.R.L.

    Strutture interne coinvolte

  • THOR, (2013-2015) - Responsabile Scientifico

    Ricerca Regionale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • Regione Piemonte
    • BITRON S.P.A.

    Strutture interne coinvolte

  • POCN – Proof of Concept Network, (2012-2015) - Responsabile Scientifico

    National Research

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • SCORE - SUPERVISIONE, CONTROLLO E OTTMIZZAZIONE DELLA PRODUZIONE DI ENERGIA RINNOVABILE, (2012-2013) - Responsabile Scientifico

    Ricerca Regionale - Poli di Innovazione

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • Regione Piemonte
    • INTEGRARE RENEWABLE ENERGIES

    Strutture interne coinvolte

  • WSN-DPCM - WSN DEVELOPMENT, PLANNING AND COMMISSIONING & MAINTENANCE TOOLSET, (2011-2015) - Responsabile Scientifico

    Ricerca UE - JTI ARTEMIS

    Abstract

    Despite the considerable research and important advances of the Wireless Sensor Networks (WSN) field, large scale application of the technology is still hindered by technical, complexity and cost issues. Ongoing R&D projects are addressing the shortcomings by focusing on energy harvesting, middleware, network intelligence, standardization, network reliability, adaptability and scalability. These are among the most prominent issues preventing a wider adoption of WSN-based solutions by system integrators and end users. WSN deployment, testing, and maintenance are still challenging the WSN wider use.This project will address the above WSN challenges by developing an integrated platform for smart environments that will comprise a middleware for heterogeneous wireless technologies as well as an integrated engineering tool for quick system development, a planning tool and a commissioning & maintenance tool for expert and non-expert users. This project will build two demonstrators in order to evaluate the impact of the developed middleware and the tools. The first application demonstrator will be an outdoor parking application where WSN will detect free parking slots in an outdoor parking and guide the drivers to reach them, park their car and enter automatically in the system all relevant information. The second application demonstrator will be system where WSN will measure the air quality and noise, light, and electromagnetic levels on city streets to assist the understanding of wide area dynamics and the City Managers' decision making process.This project will contribute to the development of a multi-domain architecture and to provide strategic input to enhance other ARTEMIS application-oriented Sub-Programmes. To further increase the value for the field, most of the project development will be released under a suitable open source license for mutual benefit and to foster academic research and know how to transfer to industry.

    Paesi coinvolti

    • ITALIA
    • SPAGNA

    Enti/Aziende coinvolti

    • METODOS Y TECNOLOGIA DE SYSTEMAS Y PROCESOS

    Strutture interne coinvolte

  • ERG-Energy for a green society: from sustainable harvesting to smart distribution. Equipments, materials, design solutions and their applications, (2011-2015) - Responsabile Scientifico

    Ricerca UE - JTI ENIAC

    Abstract

    The research, development and demonstration activities planned for the ERG project focus onthe solar energy supply chain, starting form solar cells and proceeding along with innovativeenergy extraction (harvesting) techniques, high efficiency power conversion and finallymanaging the energy distribution inside a smart grid, with the target of different classes ofapplications, from house to small area, as well as application specific “local grid” (healthcare,automotive, etc.).By considering the full solar energy supply chain, we expect to produce relevantimprovements of the industrial state-of-the-art in the efficiency of solar cells, in theoptimization of energy generated by photovoltaic systems, in the loss reduction of powerconverters and finally in energy management strategy.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • IoE-Internet of Energy for Electric Mobility, (2011-2014) - Responsabile Scientifico

    Ricerca UE - JTI ARTEMIS

    Abstract

    The objective of Internet of Energy (IoE) is to develop hardware, software and middleware for seamless, secure connectivity and interoperability achieved by connecting the Internet with the energy grids. The application of the IoE will be the infrastructure for the electric mobility. The underlying architecture is of distributed Embedded Systems (ESs), combining power electronics, integrated circuits, sensors, processing units, storage technologies, algorithms, and software. The IoE will implement the real time interface between the power network/grid and the Internet. The grid will increasingly rely on smaller, locally distributed electricity generators and storage systems that are based on plug & play principles. Power network devices and loads at the edge (such as electrical vehicles, buildings, electric devices, and home appliances) can be charged or connected on any source of energy being solar, wind, or hydroelectric. Reference designs and ESs architectures for high efficiency innovative smart network systems will be addressed with regard to requirements of compatibility, networking, security, robustness, diagnosis, maintenance, integrated resource management, and self-organization. The future smart grid will converge with the Internet based on standard interfaces, and a physical infrastructure to support electric mobility and the efficient distribution of power and information. IoE will provide a robust, accessible and programmable platform that creates applications and services facilitating an increased use of renewable energy sources as fast as is feasible in a cost effective manner. The project will enable the creation of value added services using both wired and wireless devices with access to the Internet by managing key topics: such as demand response, modelling/simulation, energy efficiency and conservation, usage monitoring, real time energy balance and billing.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • SEEMPUBS-SMART ENERGY EFFICIENT MIDDLEWARE FOR PUBLIC SPACES , (2010-2013) - Responsabile Scientifico

    Ricerca UE - VII PQ - COOPERATION - Energy

    Vedi la scheda del progetto su CORDIS

    Abstract

    SEEMPubS specifically addresses reduction in energy usage and CO2 footprint in existing Public buildings and Spaces without significant construction works, by an intelligent ICT-based service monitoring and managing the energy consumption. Special attention will be paid to historical buildings to avoid damage by extensive retrofitting. SEEMPubS will provide control of appliances to effortlessly optimise energy efficiency usage without compromising comfort or convenience and offering decision makers strategies and tools needed to plan energy saving measures. SEEMPubS will make use of the service-oriented middleware for embedded systems being developed in the Hydra project and use its huge potential to create services and applications across heterogeneous devices to develop an energy-aware platform. The SEEMPubS platform will provide necessary functionality and tools to add energy efficiency features to monitor dynamic sensor data in real time, taking advantage of natural resources (like daylight and solar energy) and controlling the operation of both passive and active environmental systems to ensure the best possible comfort conditions with the most efficient use of energy.SEEMPubS will use its real-time energy-awareness services for all users of the Public Space and combine awareness services with a community portal. This will enable collective, community activity motivating positive competition in saving energy, complemented by courses on towards the education on energy efficiency and sustainability. The functionality of this system will be demonstrated on existing buildings at the Politecnico Campus like the Valentino Castle. The validation of the most significant SEEMPubS results will allow to elaborate an energy efficient model for existing buildings and public spaces with a significant economical impact all over Europe. In fact this model could also be applied on many different historical buildings (e.g.palaces, castles and museums) where old energy systems are already in place, avoinding in this way expensive construction works and possible damages.

    Paesi coinvolti

    • Italia
    • Francia
    • Germania
    • Svezia
    • Belgio

    Enti/Aziende coinvolti

    • ENISERVIZI SPA
    • UNIVERSITE LYON 1 CLAUDE BERNARD
    • CENTRO RICERCHE FIAT SCPA
    • FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    • SINOVIA SNC
    • ISTITUTO SUPERIORE MARIO BOELLA SULLE TECNOLOGIE DELL'INFORMAZIONE E DELLE TELECOMUNICAZIONI ASSOCIAZIONE
    • CNET SVENSKA AB
    • STMICROELECTRONICS SRL
    • KATHOLIEKE UNIVERSITEIT LEUVEN

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
    • Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali
    • Dipartimento di Energetica
  • SIMEBUS - SISTEMI MECCATRONICI PER L’EFFICIENZA ENERGETICA NEI BUS, (2010-2012) - Responsabile Scientifico

    Ricerca Regionale - Poli di Innovazione

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • Regione Piemonte
    • MECT S.R.L.

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • END - MODELS, SOLUTIONS, METHODS AND TOOLS FOR ENERGY-AWARE DESIGN, (2010-2013) - Responsabile Scientifico

    Ricerca UE - JTI ENIAC

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • STMICROELECTRONICS S.R.L.

    Strutture interne coinvolte

  • POLLUX-"PROCESS ORIENTED ELECTRICAL CONTROL UNITS FOR ELECTRICAL VEHICLES DEVELOPED ON A MULTI-SYSTEM REAL-TIME EMBEDDED PLATFORM" , (2010-2013) - Responsabile Scientifico

    Ricerca UE - JTI ARTEMIS

    Abstract

    The objective of POLLUX is to develop a distributed real time embedded systems platform for next generation electric vehicles, by using a component and programming-based design methodology. Reference designs and embedded systems architectures for high efficiency innovative mechatronics systems will be addressed with regard to requirements on composability, networking, security, robustness, diagnosis, maintenance, integrated resource management, evolvability and self-organization.Next generation EVs will begin the convergence between computer and automotive architectures: future automobiles will be mechatronic systems comprising a multitude of plug-and-play and self configurable peripherals. Peripherals will be embedded systems containing hardware, algorithms, software. The architecture will be based on distributed energy while the propulsion systems will adopt radical new control concepts. Sensing, actuation, signal processing and computing devices will be embedded in the electronic equipment, electrical motors, batteries and the mechanical parts as well.The systems used to control the chassis and the power train will form the “computing engine” that automates lower level tasks during vehicle use (driver assistance, terrain evaluation, predictive battery management) and will enable future higher level functionalities (auto pilot), by means of novel human-machine interfaces.POLLUX addresses the embedded system needs for the next generation electric vehicles by exploiting the synergy with the ENIAC E3Car project which aims to develop nanoelectronics technologies, devices, circuits, and modules for EVs in preparation for the launch of a massive European EV market by 2015-2020.The project considers both vertical integration and horizontal cooperation between OEMs, hardware/software/silicon providers to build a solid, embedded-systems European industry while establishing standard designs and distributed real-time embedded-systems platforms for EVs.

    Paesi coinvolti

    • GERMANIA
    • ITALIA

    Enti/Aziende coinvolti

    • INFINEON TECHNOLOGIES AG

    Strutture interne coinvolte

  • SMECY - SMART MULTICORE EMBEDDED SYSTEMS, (2010-2013) - Responsabile Scientifico

    Ricerca UE - JTI ARTEMIS

    Paesi coinvolti

    • FRANCIA
    • ITALIA

    Enti/Aziende coinvolti

    • CEA - COMMISSARIAT A L'ENERGIE ATOMIQUE -

    Strutture interne coinvolte

  • COMPLEX - CODESIGN AND POWER MANAGEMENT IN PLATFORM-BASED DESIGN SPACE EXPLORATION, (2009-2012) - Responsabile Scientifico

    Ricerca UE - VII PQ - COOPERATION - ICT

    Vedi la scheda del progetto su CORDIS

    Abstract

    The main objective of the COMPLEX project is to increase the competitiveness of the European semiconductor, system integrator and EDA industry by addressing the problem of platform-based design space exploration under consideration of power and performance constraints early in the design process. High performance usually causes high power consumption. A main challenge in today's embedded system design is to find the perfect balance between performance and power. This balance can not be found efficiently and at high quality, because until now no generic framework for accurately and jointly estimating performance and power consumption starting at the algorithmic level is available. This can only be achieved in cooperation on a European level, taking into account European platform providers, system developers/integrators, EDA companies, Universities and research institutes from both, the HW and the embedded SW world.<br/>The COMPLEX project will enable the European semiconductor and electronic system industry to achieve a break through in product quality through substantially improved performance and power efficiency. This quantum leap will be achieved by a new design environment for platform-based design-space exploration offering developers of next-generation mobile and embedded systems a highly efficient and productive design methodology and tool chain allowing them to iteratively explore and refine their applications to meet market requirements. The design technology in particular enables the fast simulation and assessment of the platform at Electronic System Level (ESL) with up to cycle accuracy at the earliest instant in the design process. Several new modelling, exploration and simulation concepts will be developed and combined with well established ESL synthesis, cross-compilation, analysis and simulation tools into a seamless holistic design flow enabling performance & power aware virtual prototyping from a combined hardware-software perspective.

    Paesi coinvolti

    • Francia
    • Belgio
    • Paesi Bassi
    • Italia
    • Spagna
    • Cina
    • Germania

    Enti/Aziende coinvolti

    • THALES SIX GTS FRANCE SAS
    • INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
    • EUROPEAN ELECTRONIC CHIPS & SYSTEMS DESIGN INITIATIVE
    • NXP SEMICONDUCTORS NETHERLANDS BV
    • EDALab srl
    • MAGILLEM DESIGN SERVICES SAS
    • POLITECNICO DI TORINO
    • POLITECNICO DI MILANO
    • UNIVERSIDAD DE CANTABRIA
    • SNPS BELGIUM NV
    • STMICROELECTRONICS (BEIJING) R&D CO LTD
    • STMICROELECTRONICS SRL
    • ChipVision Design Systems AG
    • GMV AEROSPACE AND DEFENCE SA

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
    • Dipartimento di Elettronica
  • MODERN-MODELING AND DESIGN OF RELIABLE, PROCESS VARIATION-AWARE NANOELECTRONIC DEVICES, CIRCUITS AND SYSTEMS, (2009-2012) - Responsabile Scientifico

    Ricerca UE - JTI - ECSEL

    Vedi la scheda del progetto su CORDIS

    Abstract

    The influence of process variations is becoming extremely critical for nanoCMOS technology nodes, due to geometric tolerances and manufacturing non-idealities (such as edge or surface roughness, or the fluctuation of the number of doping atoms). As a result, production yields and figures of merit of a circuit such as performance, power, and reliability have become extremely sensitive to uncontrollable statistical process variations. Although some kind of variability has always existed and been taken into account for designing integrated circuits, the largest impact of variability and the greater influence of random or spatial aspects are setting up a completely new challenge. On top of those difficulties, the deficiency of design techniques and EDA methodologies for tackling PVs makes that challenge even more critical.The objective of the MODERN project is to develop new paradigms in integrated circuit design which will enable the manufacturing of reliable, low cost, low EMI, high-yield complex products using unreliable and variable devices.Specifically, the main goals of the project are:1. Advanced, yet accurate, models of process variations for nanometer devices, circuits and complex architectures.2. Effective methods for evaluating the impact of process variations on manufacturability, design reliability and circuit performances. - Reliability, noise, EMC/EMI. - Timing, power and yield.3. Design methods and tools to mitigate or tolerate the effects of process variations on those quantities applicable at the device, circuit and architectural levels.4. Validation of the modeling and design methods and tools on a variety of silicon demonstrators.The MODERN Consortium features strong competence and expertise in the field of advanced technologies, with a well-balanced participation between industry and research institutes.

    Paesi coinvolti

    • Spagna
    • Danimarca
    • Austria
    • Francia
    • Svizzera
    • Grecia
    • Italia
    • Paesi Bassi
    • Germania
    • Regno Unito

    Enti/Aziende coinvolti

    • Elastic Clocks S.L.
    • TEKLATECH A/S
    • TECHNISCHE UNIVERSITAET WIEN
    • Tiempo
    • TECHNISCHE UNIVERSITAET GRAZ
    • INFINEON TECHNOLOGIES AUSTRIA AG
    • STMICROELECTRONICS CROLLES 2 SAS
    • CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA - RECHERCHE ET DEVELOPPEMENT
    • COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    • SYNOPSYS SWITZERLAND LLC
    • ISD LYSEIS OLOKRIROMENON SYSTIMATONANONYMOS ETAIREIA
    • Numonyx Italy Srl
    • AMS AG
    • UNIVERSITAT POLITECNICA DE CATALUNYA
    • NXP SEMICONDUCTORS NETHERLANDS BV
    • MUNEDA GMBH
    • POLITECNICO DI TORINO
    • IMEP-LAHC Laboratory
    • ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
    • CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LA NANOELETTRONICA
    • UNIVERSITY OF GLASGOW
    • THALES
    • TECHNISCHE UNIVERSITEIT EINDHOVEN
    • STMICROELECTRONICS SRL
    • UNIVERSITA DELLA CALABRIA
    • UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
    • TECHNISCHE UNIVERSITEIT DELFT

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
    • Dipartimento di Elettronica
  • SCALOPES- SCALABEL LOW POWER EMBEDDED PLATFORMS , (2009-2011) - Responsabile Scientifico

    Ricerca UE - JTI - ECSEL

    Paesi coinvolti

    • ITALIA
    • PAESI BASSI

    Enti/Aziende coinvolti

    • NXP SEMICONDUCTORS

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • NANO-SLEEP - DESIGN METHODS AND TOOLS FOR LEAKAGE POWER REDUCTION IN NANOCMOS CIRCUITS, (2007-2009) - Responsabile Scientifico

    Ricerca Regionale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • BULLDAST

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • MAP2 - MICRO-ARCHITECTURAL POWER MANAGEMENT: METHODS, ALGORITHMS AND PROTOTYPE TOOLS, (2006-2008) - Responsabile Scientifico

    Ricerca UE - VI PQ - PMI

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • KURATORIUM OFFIS E.V.

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • Metodi e strumenti CAD per la progettazione della gerarchia di memoria in sistemi multiprocessore realizzati su singolo chip, (2006-2008) - Responsabile Scientifico

    Ricerca Nazionale - PRIN

    Abstract

    Methods and CAD tools for the design of the memory hierarchy in multiprocessor Systems-on-Chip

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • CLEAN - CONTROLLING LEAKAGE POWER IN NANOCMOS SOCS , (2005-2008) - Responsabile Scientifico

    Ricerca UE - VI PQ - IST

    Vedi la scheda del progetto su CORDIS

    Abstract

    With the advent of nanometric devices, the relevance of leakage power has grown tremendously. All technology roadmaps, as well as the results from advanced semiconductor labs indicate leakage as the real showstopper for the future generations of nanoelectronic circuits if proper counter-measures will not be taken. To be successful, and thus leading to the capability of fabricating chips with sub-65nm technologies, such counter-measures must be rooted in the design domain, as process improvement will not be sufficient to cope with the increased leakage currents in MOSFETs. In other terms, time has come for considering leakage reduction also a design problem, and not only a technology problem.CLEAN will contribute in a decisive way to the solution of the problem of controlling leakage currents in CMOS designs below 65nm, which is of strategic importance in the ASIC and SoC design landscape. The RandD effort will crystallize around the development of new leakage models for nanometric technologies usable at different levels of abstraction, from device to behavioral, innovative circuit and architectural solutions for efficient leakage management, novel methods and prototype EDA tools for automatic leakage minimization. Such methods and tools will be integrated into commercial EDA frameworks, thus providing comprehensive solutions for power-driven design.The CLEAN Consortium features the right mix of competence (semiconductor vendors, EDA vendors, research institutes) and the appropriate mobilization of resources to guarantee the successful achievement of all the project objectives. Tight links to on-going European projects targeting advanced silicon technology development (e.g., the NanoCMOS IP and its possible successor, PullNano) will guarantee synergy and convergence of objectives, towards the establishment of design capabilities that will be key for consolidating and growing the European competitiveness in the nanoelectronics business of the future.

    Paesi coinvolti

    • Germania
    • Italia

    Enti/Aziende coinvolti

    • EDACENTRUM GMBH
    • CHIPVISION DESIGN SYSTEMS AG
    • CONSORZIO PER LA RICERCA E L'EDUCAZIONE PERMANENTE, TORINO
    • POLITECNICO DI TORINO
    • UNIVERSITAT POLITECNICA DE CATALUNYA
    • POLITECHNIKA WARSZAWSKA
    • DANMARKS TEKNISKE UNIVERSITET
    • STMICROELECTRONICS SA
    • BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
    • COMMISSARIAT A L'ENERGIE ATOMIQUE
    • OFFIS EV
    • INFINEON TECHNOLOGIES AG
    • BULLDAST S.R.L.

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • TECNICHE DI PROGETTO DI SINTESI INTEGRATI SU SINGOLO CHIP PER APPLICAZIONI MULTIMEDIALI SU RETI WIRELESS, (2003-2005) - Responsabile Scientifico

    Ricerca Nazionale - FIRB

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • Algoritmi e architetture hardware per la riduzione del consumo energetico nei sistemi embedded basati sulla compressione delle informazioni, (2002-2004) - Responsabile Scientifico

    Ricerca Nazionale - PRIN

    Abstract

    Algorithms and hardware architectures for energy minimization in embedded systems based on information compression

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • MARLOW - A CENTRAL MARKET PLACE FOR DISSEMINATION OF LOWPOWER MICRO-ELECTRONICS DESIGN KNOWLEDGE, (2002-2005) - Responsabile Scientifico

    Ricerca UE - VPQ - IST (SOCIETA' DELL'INFORMAZIONE)

    Paesi coinvolti

    • BELGIO
    • ITALIA
    • PAESI BASSI

    Enti/Aziende coinvolti

    • CEE - COMUNITÀ ECONOMICA EUROPEA -
    • TECHNISCHE UNIVERSITEIT DELFT

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • INTRALED - INDUSTRY-DRIVEN TRAINING FOR LOW-POWER EUROPEAN DESIGNERS, (2002-2005) - Responsabile Scientifico

    Ricerca UE - VPQ - IST (SOCIETA' DELL'INFORMAZIONE)

    Paesi coinvolti

    • BELGIO
    • ITALIA

    Enti/Aziende coinvolti

    • CEE - COMUNITÀ ECONOMICA EUROPEA -

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • EASY - ENERGY AWARE SYSTEM-ON-CHIP DESIGN OF THE 'HIPERLAN/2' STANDARD, (2001-2004) - Responsabile Scientifico

    Ricerca UE - VPQ - IST (SOCIETA' DELL'INFORMAZIONE)

    Paesi coinvolti

    • BELGIO
    • GRECIA
    • ITALIA

    Enti/Aziende coinvolti

    • CEE - COMUNITÀ ECONOMICA EUROPEA -
    • INTRACOM S.A. HELLENIC TELECOMMUNICATIONS

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • POET - POWER OPTIMISATION FOR EMBEDDED SYSTEMS, (2001-2004) - Responsabile Scientifico

    Ricerca UE - VPQ - IST (SOCIETA' DELL'INFORMAZIONE)

    Paesi coinvolti

    • BELGIO
    • ITALIA

    Enti/Aziende coinvolti

    • CEE - COMUNITÀ ECONOMICA EUROPEA -
    • KURATORIUM OFFIS E.V.

    Strutture interne coinvolte

    • Dipartimento di Automatica Informatica
  • Vedi altro

Finanziati da contratti commerciali

  • Rinnovo Accordo di Partnership n. 402/2016 tra Politecnico di Torino e ST Microelectronics S.r.l. per la collaborazione allo svolgimento attività di ricerca avanzata congiunta presso il laboratorio “ST-POLITO" c/o DAUIN, (2022-2026) - Responsabile Scientifico

    Accordi di Partnership

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • STMICROELECTRONICS S.R.L.
  • Proroga del contratto di prestazione di servizi tra Cefriel s.c.a.r.l. e Politecnico di Torino per lo svolgimento di attività connesse al progetto “Independent scientific support and emergent technologies service”., (2021-2025) - Componente gruppo di Ricerca

    Prestazione di Servizi commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • CEFRIEL S.Cons.r.l.
  • Sviluppo e implementazione di tecniche di data analytics su dati in tempo reale da macchinari industriali, (2021-2023) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • FARMACEUTICI PROCEMSA S.P.A.

    Strutture interne coinvolte

  • Supporto allo sviluppo e porting di applicazioni mobili di monitoraggio dei dati provenienti da sensori su macchinari industriali, (2021-2023) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • Zirak s.r.l.

    Strutture interne coinvolte

  • Supporto per l'integrazione di soluzioni di data analytics di dati provenienti da macchine industriali, (2021-2023) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • AL.MEC SRL

    Strutture interne coinvolte

  • Supporto tecnico per integrazione di un Digital Twin per macchine per la meccanica di precisione, (2021-2023) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • TAU SRL

    Strutture interne coinvolte

  • Supporto per la realizzazione di applicazioni per la visualizzazione dei dati in contesto industriale, (2021-2023) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • Soft-in srl

    Strutture interne coinvolte

  • Valutazione dei sistemi di visione da utilizzare sulle catene produttive di Michelin, (2021-2022) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • SPA MICHELIN ITALIANA

    Strutture interne coinvolte

  • Convenzione tra il politecnico di Torino e la fondazione ISI "Institute for Scientific Interchange, (2014-2018) - Responsabile Scientifico

    Convenzioni

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • ISTITUTO PER L'NTERSCAMBIO SCIENTIFICO
  • Vedi altro